Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure

نویسندگان

  • Vladimir Reinharz
  • François Major
  • Jérôme Waldispühl
چکیده

MOTIVATION The prediction of RNA 3D structures from its sequence only is a milestone to RNA function analysis and prediction. In recent years, many methods addressed this challenge, ranging from cycle decomposition and fragment assembly to molecular dynamics simulations. However, their predictions remain fragile and limited to small RNAs. To expand the range and accuracy of these techniques, we need to develop algorithms that will enable to use all the structural information available. In particular, the energetic contribution of secondary structure interactions is now well documented, but the quantification of non-canonical interactions-those shaping the tertiary structure-is poorly understood. Nonetheless, even if a complete RNA tertiary structure energy model is currently unavailable, we now have catalogues of local 3D structural motifs including non-canonical base pairings. A practical objective is thus to develop techniques enabling us to use this knowledge for robust RNA tertiary structure predictors. RESULTS In this work, we introduce RNA-MoIP, a program that benefits from the progresses made over the last 30 years in the field of RNA secondary structure prediction and expands these methods to incorporate the novel local motif information available in databases. Using an integer programming framework, our method refines predicted secondary structures (i.e. removes incorrect canonical base pairs) to accommodate the insertion of RNA 3D motifs (i.e. hairpins, internal loops and k-way junctions). Then, we use predictions as templates to generate complete 3D structures with the MC-Sym program. We benchmarked RNA-MoIP on a set of 9 RNAs with sizes varying from 53 to 128 nucleotides. We show that our approach (i) improves the accuracy of canonical base pair predictions; (ii) identifies the best secondary structures in a pool of suboptimal structures; and (iii) predicts accurate 3D structures of large RNA molecules. AVAILABILITY RNA-MoIP is publicly available at: http://csb.cs.mcgill.ca/RNAMoIP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA-MoIP: prediction of RNA secondary structure and local 3D motifs from sequence data

RNA structures are hierarchically organized. The secondary structure is articulated around sophisticated local three-dimensional (3D) motifs shaping the full 3D architecture of the molecule. Recent contributions have identified and organized recurrent local 3D motifs, but applications of this knowledge for predictive purposes is still in its infancy. We recently developed a computational framew...

متن کامل

Arrangement of 3D structural motifs in ribosomal RNA

Structural 3D motifs in RNA play an important role in the RNA stability and function. Previous studies have focused on the characterization and discovery of 3D motifs in RNA secondary and tertiary structures. However, statistical analyses of the distribution of 3D motifs along the RNA appear to be lacking. Herein, we present a novel strategy for evaluating the distribution of 3D motifs along th...

متن کامل

A max-margin model for predicting residue–base contacts in protein–RNA interactions

Motivation: Protein–RNA interactions (PRIs) are essential for many biological processes, so understanding aspects of the sequence and structure in PRIs is important for understanding those processes. Due to the expensive and time-consuming processes required for experimental determination of complex protein–RNA structures, various computational methods have been developed to predict PRIs. Howev...

متن کامل

RNA Bricks—a database of RNA 3D motifs and their interactions

The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA-protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. 'RNA bricks' are presented in the molecular environment, in which they were determined,...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2012